Tuning a riboswitch response through structural extension of a pseudoknot.
نویسندگان
چکیده
Structural and dynamic features of RNA folding landscapes represent critical aspects of RNA function in the cell and are particularly central to riboswitch-mediated control of gene expression. Here, using single-molecule fluorescence energy transfer imaging, we explore the folding dynamics of the preQ1 class II riboswitch, an upstream mRNA element that regulates downstream encoded modification enzymes of queuosine biosynthesis. For reasons that are not presently understood, the classical pseudoknot fold of this system harbors an extra stem-loop structure within its 3'-terminal region immediately upstream of the Shine-Dalgarno sequence that contributes to formation of the ligand-bound state. By imaging ligand-dependent preQ1 riboswitch folding from multiple structural perspectives, we reveal that the extra stem-loop strongly influences pseudoknot dynamics in a manner that decreases its propensity to spontaneously fold and increases its responsiveness to ligand binding. We conclude that the extra stem-loop sensitizes this RNA to broaden the dynamic range of the ON/OFF regulatory switch.
منابع مشابه
Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
Riboswitches are cis-acting RNA fragments that regulate gene expression by sensing cellular levels of the associated small metabolites. In bacteria, the class I preQ(1) riboswitch allows the fine-tuning of queuosine biosynthesis in response to the intracellular concentration of the queuosine anabolic intermediate preQ(1). When binding preQ(1), the aptamer domain undergoes a significant degree o...
متن کاملStructural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
The modified nucleotide queuosine (Q) is almost universally found in the anticodon wobble position of specific tRNAs. In many bacteria, biosynthesis of Q is modulated by a class of regulatory mRNA elements called riboswitches. The preQ(1) riboswitch, found in the 5'UTR of bacterial genes involved in synthesis of the Q precursors preQ(0) and preQ(1), contains the smallest known aptamer domain. W...
متن کاملCore requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure
The glmS ribozyme is a self-cleaving RNA catalyst that resides in the 5'-untranslated region of glmS mRNA in certain bacteria. The ribozyme is specifically activated by glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein, and is thus proposed to provide a feedback mechanism of riboswitch regulation. Both phylogenetic and biochemical analyses of the glmS ribozyme have est...
متن کاملStructural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
PreQ1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HLout-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ1-III riboswitch aptamer for...
متن کاملc-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets
The ydaO riboswitch, involved in sporulation, osmotic stress responses and cell wall metabolism, targets the second messenger cyclic-di-AMP with subnanomolar affinity. We have solved the structure of c-di-AMP bound to the Thermoanaerobacter tengcongensis ydaO riboswitch, thereby identifying a five-helical scaffold containing a zippered-up bubble, a pseudoknot and long-range tertiary base pairs....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 35 شماره
صفحات -
تاریخ انتشار 2013